Evaluation of Marginal Bone Loss In Dental Implants With Different Thread Structure: Pilot Study
Elif Gözde Nalbantoğlu, Esra Bilgi Özyetim, Çağatay Dayan, Onur Geçkili
Türk Dişhekimliği Dergisi
Yıl: 2023 | Cilt: 26 | Sayı: 96 | Sayfa: 10-13

Özet

Yerleştirme sırasında implantın stabilitesinin sağlanması, başarı için kritik bir faktör olarak kabul edilmektedir. İmplant stabilitesine ek olarak, peri-implant marjinal kemik kaybı önemli bir tedavi sonuç ölçüsüdür. Bu prospektif pilot çalışmada, aynı implant firmasına ait iki farklı yiv tasarımına sahip implantların 1 yıllık takip sonrası marjinal kemik kayıplarının değerlendirmesi amaçlanmıştır. Çalışmaya 15 hasta ve 41 adet implant dahil edilmiştir. Uygulanan implantların 8’i agresif yiv tasarımına sahip ve 33’ü ise normal yiv tasarımına sahiptir. İmplantların yüklenmesini takiben ve 1 yıl sonra hastalardan panoramik radyografiler CCD sensörlü cihazı ile dijital olarak elde edilmiştir. Alınan röntgenler üzerinde marjinal kemik kaybı ölçümleri yapılmış, elde edilen veriler istatistik programı ile değerlendirilmiştir. Agresif yivli ve normal yiv yapısına sahip implantlarda 1 yıl sonunda saptanan marjinal kemik kaybı miktarı arasında anlamlı ilişki bulunmamıştır.

Anahtar Kelimeler

Kemik Kaybı, Agresif Yiv, Dental İmplant

Abstract

Ensuring implant stability during placement is considered a critical factor for success. In addition to implant stability, peri-implant marginal bone loss is an important measure of treatment outcome. The aim of this prospective pilot study was to evaluate the marginal bone loss of implants with two different thread designs of the same implant company after 1 year of follow-up. The study included 15 patients and 41 implants. Of the implants, 8 were implants with aggressive thread design and 33 were implants with regular thread design. Panoramic radiographs were obtained digitally with a CCD sensor device following implant loading and 1 year later. Marginal bone loss measurements were made on the radiographs and the data obtained were evaluated with a statistical program. No significant correlation was found between the amount of marginal bone loss detected at the end of 1 year in implants with aggressive and regular thread structure.

Keywords

Marginal Bone Loss, Aggressive Thread, Dental Implant

Referanslar | References

  1. Moraschini V, Poubel LADC, Ferreira VF, Barboza EDSP. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int. J. Oral Maxillofac. Surg. 2015;44:377–388.
  2. Brånemark P, Zarb G, Albrektsson T. Tissue-integrated prostheses. Chicago; Quintessence. 1985. p. 11-43.
  3. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  4. Listgarten MA. Clinical trials of endosseous implants: issues in analysis and interpretation. Ann Periodontol. 1997;2:299-313.
  5. Javed F, Ahmed H, Crespi R, Romanos G. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv. Med. Appl. Sci. 2013;5(4):162–167.
  6.  Gartshore L. Risk factors in implant dentistry. Br. Dent. J. 2008; 205(2):109.
  7. Lombardi T et al. Factors influencing early marginal bone loss around dental implants positioned subcrestally: A multicenter prospective clinical study, J. Clin. Med. 2019;8(8):1168.
  8. Naveau A, Shinmyouzu K, Moore C, Avivi-Arber L, Jokerst  J, Koka S. Etiology and measurement of peri-implant crestal bone loss. J. Clin. Med. 2019;8(2):166.
  9. John V, Shin D, Marlow A, Hamada Y. Peri-implant bone loss and peri- implantitis: A report of three cases and review of the literatüre. Case Rep. Dent. 2016.
  10.  Kate M, Palaskar S, Kapoor P. Implant failure: A dentist’s nightmare. J. Dent. Implant. 2016;6(2):51.
  11. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11-25.
  12. Shemtov-Yona K, Rittel D. An overview of the mechanical integrity of dental implants, Biomed Res. Int. 2015.
  13. Oswal MM, Amasi UN, Oswal MS, Bhagat AS. Influence of three different implant thread designs on stress distribution: A three-dimensional finite element analysis. J. Indian Prosthodont. Soc. 2016;16:359–365.
  14. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur. J. Oral Sci. 1998;106:527–551.
  15.  Naveau A, Shinmyouzu K, Moore C, Avivi-Arber L, Jokerst J, Koka S. Etiology and measurement of peri-implant crestal bone loss (CBL). J. Clin. Med. 2019; 8:166.
  16. Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D, Cochran DL. Peri-implant inflammation defined by the implant-abutment interface. J. Dent. Res. 2006;85:473–478.
  17. Güven SS, Cabbar F, Güler N. Local and systemic factors associated with marginal bone loss around dental implants: A retrospective clinical study. Quintessence Int. 2020;51:128–141.
  18. Bolind PK, Johansson CB, Becker W, Langer L, Sevetz EB, Jr., & Albrektsson TO. A descriptive study on retrieved non-threaded and threaded implant designs. Clin Oral Implants Res. 2005;16(4):447-455.
  19. Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen Y W. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non- linear finite element study. J Dent. 2008;36(6):409-417.
  20. Irinakis T, Wiebe C. Clinical evaluation of the NobelActive implant system: a case series of 107 consecutively placed implants and a review of the implant features. J Oral Implantol. 2009;35(6):283-288.
  21. Makary, Christian, et al. Peak insertion torque correlated to histologically and clinically evaluated bone density. Implant Dentistry. 2011;182-191.
  22. O'Sullivan, Dominic, Lars Sennerby, and Neil Meredith. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clinical implant dentistry and related research. 2000; 2.2: 85-92.
  23. Ivanoff CJ, Sennerby L, Lekholm U. Influence of initial implant mobility on the integration of titanium implants. An experimental study in rabbits. Clin Oral Implants Res 1996;7:120-7.
  24. de Souza JG, Neto AR, Filho GS, Dalago HR, de Souza Junior JM, Bianchini MA. Impact of local and systemic factors on additional peri-implant bone loss. Quintessence Int 2013;44:415-24.
  25. Molly L. Bone density and primary stability in implant therapy. Clin Oral Implants Res 2006;17 Suppl 2:124-35.
  26. Ormianer Z, Matalon S, Block J, Kohen J. Dental implant thread design and the consequences on long-term marginal bone loss. Implant Dent 2016;25:471-7.
  27. Khalaila W, Nasser M, Ormianer Z. Evaluation of the relationship between Periotest values, marginal bone loss, and stability of single dental implants: A 3-year prospective study. The Journal of Prosthetic Dentistry 2020;124(2):183-188.
  28. Chaksupa C, Pimkhaokham A. A Comparison of Implant Stability between Aggressive and Non-Aggressive Dental Implant Design Using Two Different Stability Measuring Techniques: In Vitro. RSU International Research Conference. April 2022.
  29. McCullough JJ, Klokkevold PR. The effect of implant macro-thread design on implant stability in the early post-operative period: a randomized, controlled pilot study. Clin Oral Implants Res 2017;28(10):1218-1226.
  30. Irinakis T, Wiebe C. Clinical evaluation of the NobelActive implant system: a case series of 107 consecutively placed implants and a review of the implant features. J Oral Implantol 2009;35(6):283-288.